TY - JOUR
T1 - An integrated bioinformatics study of a novel niclosamide derivative, nsc765689, a potential gsk3β/β-catenin /stat3/ cd44 suppressor with anti-glioblastoma properties
AU - Mokgautsi, Ntlotlang
AU - Wen, Ya Ting
AU - Lawal, Bashir
AU - Khedkar, Harshita
AU - Sumitra, Maryam Rachmawati
AU - Wu, Alexander T.H.
AU - Huang, Hsu Shan
N1 - Funding Information:
Hsu-Shan Huang is funded by the Ministry of Science and Technology (MOST 109-2113-M-038-003). Ya-Ting Wen and Hsu-Shan Huang are funded by a Taipei Medical University and Wan-Fang Hospital research grant (109TMU-WFH-18). Ya-Ting Wen is also funded by the Ministry of Science and Technology (MOST 110-2314-B-038-024).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/3/1
Y1 - 2021/3/1
N2 - Despite management efforts with standard surgery, radiation, and chemotherapy, glio-blastoma multiform (GBM) remains resistant to treatment, which leads to tumor recurrence due to glioma stem cells (GSCs) and therapy resistance. In this study, we used random computer-based prediction and target identification to assess activities of our newly synthesized niclosamide-de-rived compound, NSC765689, to target GBM oncogenic signaling. Using target prediction analyses, we identified glycogen synthase kinase 3β (GSK3β), β-Catenin, signal transducer and activator of transcription 3 (STAT3), and cluster of differentiation 44 (CD44) as potential druggable candidates of NSC765689. The above-mentioned signaling pathways were also predicted to be overexpressed in GBM tumor samples compared to adjacent normal samples. In addition, using bioinformatics tools, we also identified microRNA (miR)-135b as one of the most suppressed microRNAs in GBM sam-ples, which was reported to be upregulated through inhibition of GSK3β, and subsequently suppresses GBM tumorigenic properties and stemness. We further performed in silico molecular docking of NSC765689 with GBM oncogenes; GSK3β, β-Catenin, and STAT3, and the stem cell marker, CD44, to predict protein-ligand interactions. The results indicated that NSC765689 exhibited stronger binding affinities compared to its predecessor, LCC09, which was recently published by our laboratory, and was proven to inhibit GBM stemness and resistance. Moreover, we used available US National Cancer Institute (NCI) 60 human tumor cell lines to screen in vitro anticancer effects, including the anti-proliferative and cytotoxic activities of NSC765689 against GBM cells, and 50% cell growth inhibition (GI50) values ranged 0.23~5.13 μM. In summary, using computer-based predictions and target identification revealed that NSC765689 may be a potential pharmacological lead compound which can regulate GBM oncogene (GSK3β /β-Catenin /STAT3 / CD44) signaling and upregulate the miR-135b tumor suppressor. Therefore, further in vitro and in vivo investigations will be performed to validate the efficacy of NSC765689 as a novel potential GBM therapeutic.
AB - Despite management efforts with standard surgery, radiation, and chemotherapy, glio-blastoma multiform (GBM) remains resistant to treatment, which leads to tumor recurrence due to glioma stem cells (GSCs) and therapy resistance. In this study, we used random computer-based prediction and target identification to assess activities of our newly synthesized niclosamide-de-rived compound, NSC765689, to target GBM oncogenic signaling. Using target prediction analyses, we identified glycogen synthase kinase 3β (GSK3β), β-Catenin, signal transducer and activator of transcription 3 (STAT3), and cluster of differentiation 44 (CD44) as potential druggable candidates of NSC765689. The above-mentioned signaling pathways were also predicted to be overexpressed in GBM tumor samples compared to adjacent normal samples. In addition, using bioinformatics tools, we also identified microRNA (miR)-135b as one of the most suppressed microRNAs in GBM sam-ples, which was reported to be upregulated through inhibition of GSK3β, and subsequently suppresses GBM tumorigenic properties and stemness. We further performed in silico molecular docking of NSC765689 with GBM oncogenes; GSK3β, β-Catenin, and STAT3, and the stem cell marker, CD44, to predict protein-ligand interactions. The results indicated that NSC765689 exhibited stronger binding affinities compared to its predecessor, LCC09, which was recently published by our laboratory, and was proven to inhibit GBM stemness and resistance. Moreover, we used available US National Cancer Institute (NCI) 60 human tumor cell lines to screen in vitro anticancer effects, including the anti-proliferative and cytotoxic activities of NSC765689 against GBM cells, and 50% cell growth inhibition (GI50) values ranged 0.23~5.13 μM. In summary, using computer-based predictions and target identification revealed that NSC765689 may be a potential pharmacological lead compound which can regulate GBM oncogene (GSK3β /β-Catenin /STAT3 / CD44) signaling and upregulate the miR-135b tumor suppressor. Therefore, further in vitro and in vivo investigations will be performed to validate the efficacy of NSC765689 as a novel potential GBM therapeutic.
KW - Drug resistance
KW - Glioblastoma multiforme (GBM)
KW - Glioma stem cell (GSC)
KW - In silico molecular docking
KW - MiR-135b
KW - Stemness
KW - Tumor microenvironment (TME)
UR - http://www.scopus.com/inward/record.url?scp=85101666457&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101666457&partnerID=8YFLogxK
U2 - 10.3390/ijms22052464
DO - 10.3390/ijms22052464
M3 - Article
AN - SCOPUS:85101666457
SN - 1661-6596
VL - 22
SP - 1
EP - 23
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 5
M1 - 2464
ER -