An integrated analysis of dysregulated SCD1 in human cancers and functional verification of miR-181a-5p/SCD1 axis in esophageal squamous cell carcinoma

Bing Yen Wang, Yuan Yen Chang, Li Yen Shiu, Yi Ju Lee, Yu Wei Lin, Yu Shen Hsu, Hsin Ting Tsai, Sung Po Hsu, Li Jen Su, Meng Hsiu Tsai, Jing Hong Xiao, Jer An Lin, Chang Han Chen

Research output: Contribution to journalArticlepeer-review


Esophageal squamous cell carcinoma (ESCC), one of the most lethal cancers, has become a global health issue. Stearoyl-coA desaturase 1 (SCD1) has been demonstrated to play a crucial role in human cancers. However, pan-cancer analysis has revealed little evidence to date. In the current study, we systematically inspected the expression patterns and potential clinical outcomes of SCD1 in multiple human cancers. SCD1 was dysregulated in several types of cancers, and its aberrant expression acted as a diagnostic biomarker, indicating that SCD1 may play a role in tumorigenesis. We used ESCC as an example to demonstrate that SCD1 was dramatically upregulated in tumor tissues of ESCC and was associated with clinicopathological characteristics in ESCC patients. Furthermore, Kaplan-Meier analysis showed that high SCD1 expression was correlated with poor progression-free survival (PFS) and disease-free survival (DFS) in ESCC patients. The protein-protein interaction (PPI) network and module analysis by PINA database and Gephi were performed to identify the hub targets. Meanwhile, the functional annotation analysis of these hubs was constructed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Functionally, the gain-of-function of SCD1 in ESCC cells promoted cell proliferation, migration, and invasion; in contrast, loss-of-function of SCD1 in ESCC cells had opposite effects. Bioinformatic, QPCR, Western blotting and luciferase assays indicated that SCD1 was a direct target of miR-181a-5p in ESCC cells. In addition, gain-of-function of miR-181a-5p in ESCC cells reduced the cell growth, migratory, and invasive abilities. Conversely, inhibition of miR-181a-5p expression by its inhibitor in ESCC cells had opposite biological effects. Importantly, reinforced SCD1 in miR-181a-5p mimic ESCC transfectants reversed miR-181a-5p mimic-prevented malignant phenotypes of ESCC cells. Taken together, these results indicate that SCD1 expression influences tumor progression in a variety of cancers, and the miR-181a-5p/SCD1 axis may be a potential therapeutic target for ESCC treatment.

Original languageEnglish
Pages (from-to)4030-4043
Number of pages14
JournalComputational and Structural Biotechnology Journal
Publication statusPublished - Jan 2023


  • ESCC
  • MiR-181a-5p
  • Stearoyl-CoA desaturase

ASJC Scopus subject areas

  • Biotechnology
  • Biophysics
  • Structural Biology
  • Biochemistry
  • Genetics
  • Computer Science Applications


Dive into the research topics of 'An integrated analysis of dysregulated SCD1 in human cancers and functional verification of miR-181a-5p/SCD1 axis in esophageal squamous cell carcinoma'. Together they form a unique fingerprint.

Cite this