An artificial neural network model for predicting successful extubation in intensive care units

Meng Hsuen Hsieh, Meng Ju Hsieh, Chin Ming Chen, Chia Chang Hsieh, Chien Ming Chao, Chih Cheng Lai

Research output: Contribution to journalArticlepeer-review

50 Citations (Scopus)

Abstract

Background: Successful weaning from mechanical ventilation is important for patients in intensive care units (ICUs). The aim was to construct neural networks to predict successful extubation in ventilated patients in ICUs. Methods: Data from 1/12/2009 through 31/12/2011 of 3602 patients with planned extubation in Chi-Mei Medical Center’s ICUs was used to train and test an artificial neural network (ANN). The input was 37 clinical risk factors, and the output was a failed extubation prediction. Results: One hundred eighty-five patients (5.1%) had a failed extubation. Multivariate analyses revealed that failure was positively associated with therapeutic intervention scoring system (TISS) scores (odds ratio [OR]: 1.814; 95% Confidence Interval [CI]: 1.283–2.563), chronic hemodialysis (OR: 12.264; 95% CI: 8.556–17.580), rapid shallow breathing (RSI) (OR: 2.003; 95% CI: 1.378–2.910), and pre-extubation heart rate (OR: 1.705; 95% CI: 1.173–2.480), but negatively associated with pre-extubation PaO2/FiO2 (OR: 0.529; 95%: 0.370–0.750) and maximum expiratory pressure (MEP) (OR: 0.610; 95% CI: 0.413–0.899). A multilayer perceptron ANN model with 19 neurons in a hidden layer was developed. The overall performance of this model was F1: 0.867, precision: 0.939, and recall: 0.822. The area under the receiver operating characteristic curve (AUC) was 0.85, which is better than any one of the following predictors: TISS: 0.58 (95% CI: 0.54–0.62; p < 0.001); 0.58 (95% CI: 0.53–0.62; p < 0.001); and RSI: 0.54 (95% CI: 0.49–0.58; p = 0.097). Conclusions: The ANN performed well when predicting failed extubation, and it will help predict successful planned extubation.

Original languageEnglish
Article number240
JournalJournal of Clinical Medicine
Volume7
Issue number9
DOIs
Publication statusPublished - Sept 2018
Externally publishedYes

Keywords

  • Artificial neural network
  • Predictor
  • Successful extubation

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'An artificial neural network model for predicting successful extubation in intensive care units'. Together they form a unique fingerprint.

Cite this