Alteration of the intra- and inter-lobe connectivity of the brain structural network in normal aging

Chi Wen Jao, Jiann Horng Yeh, Yu Te Wu, Li Ming Lien, Yuh Feng Tsai, Kuang En Chu, Chen Yu Hsiao, Po Shan Wang, Chi Ieong Lau

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


The morphological changes in cortical parcellated regions during aging and whether these atrophies may cause brain structural network intra- and inter-lobe connectivity alterations are subjects that have been minimally explored. In this study, a novel fractal dimension-based structural network was proposed to measure atrophy of 68 parcellated cortical regions. Alterations of structural network parameters, including intra- and inter-lobe connectivity, were detected in a middle-aged group (30-45 years old) and an elderly group (50-65 years old). The elderly group exhibited significant lateralized atrophy in the left hemisphere, and most of these fractal dimension atrophied regions were included in the regions of the "last-in, first-out" model. Globally, the elderly group had lower modularity values, smaller component size modules, and fewer bilateral association fibers. They had lower intra-lobe connectivity in the frontal and parietal lobes, but higher intra-lobe connectivity in the temporal and occipital lobes. Both groups exhibited similar inter-lobe connecting pattern. The elderly group revealed separations, sparser long association fibers, commissural fibers, and lateral inter-lobe connectivity lost effect, mainly in the right hemisphere. New wiring and reconfiguring modules may have occurred within the brain structural network to compensate for connectivity, decreasing and preventing functional loss in cerebral intra- and inter-lobe connectivity.

Original languageEnglish
Article number826
Issue number8
Publication statusPublished - Aug 2020


  • Aging
  • Brain structural network
  • Inter-lobe connectivity
  • Intra-lobe connectivity

ASJC Scopus subject areas

  • General Physics and Astronomy


Dive into the research topics of 'Alteration of the intra- and inter-lobe connectivity of the brain structural network in normal aging'. Together they form a unique fingerprint.

Cite this