TY - JOUR
T1 - Advancements in regenerative medicine
T2 - a comprehensive review of stem cell and growth factor therapies for osteoarthritis
AU - Hung, Chen Yuan
AU - Hsueh, Tai Yuan
AU - Rethi, Lekshmi
AU - Lu, Hsien Tsung
AU - Chuang, Andrew E.Y.
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2025
Y1 - 2025
N2 - Osteoarthritis (OA) is a widely encountered degenerative joint disorder marked by gradual cartilage deterioration, inflammation, and pain, which collectively impose considerable strain on global healthcare systems. While traditional therapies typically offer relief from symptoms, they do not tackle the core pathophysiological aspects of the disease. Regenerative medicine has recently risen as a promising field for addressing OA, capitalizing on the regenerative capabilities of stem cells and growth factors to foster tissue healing and renewal. This thorough review delves into the most recent progress in stem cell and growth factor treatments for OA, covering preclinical studies, clinical trials, and novel technological developments. We discuss the diverse origins of stem cells, such as mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and adipose-derived stem cells (ASCs), underscoring their therapeutic actions and effectiveness in both preclinical and clinical environments. Moreover, we explore contributions of growth factors like transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), and insulin-like growth factor (IGF) in modifying OA's pathology and enhancing tissue restoration. Additionally, this review discusses the hurdles and constraints tied to current regenerative strategies, including the standardization of cell sources, the refinement of delivery techniques, and considerations for long-term safety. By meticulously assessing the latest research outcomes and technological breakthroughs, this review aims to shed light on the potential of stem cell and growth factor therapies as forthcoming therapeutic options for OA, thereby propelling forward the domain of regenerative medicine and enhancing clinical results for individuals afflicted with this incapacitating ailment.
AB - Osteoarthritis (OA) is a widely encountered degenerative joint disorder marked by gradual cartilage deterioration, inflammation, and pain, which collectively impose considerable strain on global healthcare systems. While traditional therapies typically offer relief from symptoms, they do not tackle the core pathophysiological aspects of the disease. Regenerative medicine has recently risen as a promising field for addressing OA, capitalizing on the regenerative capabilities of stem cells and growth factors to foster tissue healing and renewal. This thorough review delves into the most recent progress in stem cell and growth factor treatments for OA, covering preclinical studies, clinical trials, and novel technological developments. We discuss the diverse origins of stem cells, such as mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and adipose-derived stem cells (ASCs), underscoring their therapeutic actions and effectiveness in both preclinical and clinical environments. Moreover, we explore contributions of growth factors like transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), and insulin-like growth factor (IGF) in modifying OA's pathology and enhancing tissue restoration. Additionally, this review discusses the hurdles and constraints tied to current regenerative strategies, including the standardization of cell sources, the refinement of delivery techniques, and considerations for long-term safety. By meticulously assessing the latest research outcomes and technological breakthroughs, this review aims to shed light on the potential of stem cell and growth factor therapies as forthcoming therapeutic options for OA, thereby propelling forward the domain of regenerative medicine and enhancing clinical results for individuals afflicted with this incapacitating ailment.
UR - http://www.scopus.com/inward/record.url?scp=86000150709&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=86000150709&partnerID=8YFLogxK
U2 - 10.1039/d4tb01769b
DO - 10.1039/d4tb01769b
M3 - Review article
AN - SCOPUS:86000150709
SN - 2050-750X
JO - Journal of Materials Chemistry B
JF - Journal of Materials Chemistry B
ER -