Abstract

Diabetic retinopathy (DR) is a severe consequence of long-term diabetes mellitus and may lead to vision loss. Retinal pigment epithelial (RPE) cells are a diverse group of retinal cells with varied metabolic and functional roles. In hypoxic conditions, RPE cells have been shown to produce angiogenic factors, such as vascular endothelial growth factor (VEGF), which is regulated by hypoxia-inducible factor 1-alpha (HIF1A). VEGF plays a crucial role in angiogenesis in DR. In the present study, we investigated whether azatyrosine-phenylbutyric hydroxamide (AZP) has therapeutic effect on DR therapy. In this study, we treated high glucose-activated human retinal pigment epithelial cells (ARPE-19) with and without AZP. The effector proteins were evaluated using western blotting. In the in vivo study, AZP was administered to the db/db mice as a DR animal model. Moreover, invasive imaging techniques such as optical coherence tomography (OCT), fundus photography, and fundus fluorescein angiography (FFA) were performed on the mice to assess DR progression. We found that treatment of AZP for 12 weeks reversed increasing DR retinal alterations in db/db mice, decreasing vascular density, retinal blood perfusion, retinal thickness, decreasing DR lesion, lipofuscin accumulation, HIF1A, VEGF, and inflammation factor expression. In addition, AZP treatment could activate the aryl hydrocarbon receptor AHR and reverse the high-glucose-induced HIF1A and VEGF in ARPE-19 cells and db/db mice. In conclusion, AZP activated AHR while inhibiting HIF1A and VEGF. This study indicates that AZP may be a promising therapeutic agent for treating DR.

Original languageEnglish
Article number115700
JournalBiochemical Pharmacology
Volume215
DOIs
Publication statusPublished - Sept 2023

Keywords

  • Aryl hydrocarbon receptor
  • Azatyrosine-phenylbutyric hydroxamide
  • Diabetic retinopathy
  • HIF1A
  • Inflammation factor
  • VEGF

ASJC Scopus subject areas

  • Biochemistry
  • Pharmacology

Fingerprint

Dive into the research topics of 'Activation of aryl hydrocarbon receptor by azatyrosine-phenylbutyric hydroxamide inhibits progression of diabetic retinopathy mice'. Together they form a unique fingerprint.

Cite this