Accurate method to estimate insulin resistance from multiple regression models using data of metabolic syndrome and oral glucose tolerance test

Chung-Ze Wu, Jiunn-Diann Lin, Te Lin Hsia, Chun Hsien Hsu, Chang Hsun Hsieh, Jin Biou Chang, Jin Shuen Chen, Chun Pei, Dee Pei, Yen Lin Chen

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Aims/Introduction: How to measure insulin resistance (IR) accurately and conveniently is a critical issue for both clinical practice and research. In the present study, we tried to modify the β-cell function, insulin sensitivity, and glucose tolerance test (BIGTT) in patients with normal glucose tolerance (NGT) and abnormal glucose tolerance (AGT) by oral glucose tolerance test (OGTT) and metabolic syndrome (MetS) components. Materials and Methods: There were 327 participants enrolled and divided into NGT or AGT. Data from 75% of the participants were used to build the models, and the remaining 25% were used for external validation. Steady-state plasma glucose (SSPG) concentration derived from the insulin suppression test was regarded as the standard measurement for IR. Five models were built from multiple regression: model 1 (MetS model with sex, age and MetS components); model 2 (simple OGTT model with sex, age, plasma glucose, and insulin concentrations at 0 and 120 min during OGTT); model 3 (full OGTT model with sex, age, and plasma glucose and insulin concentrations at 0, 30, 60, 90, 120, and 180 min during OGTT); model 4 (simple combined model): model 1 and model 2; and model 5 (full model): model 1 and 3. Results: In general, our models had higher r2 compared with surrogates derived from OGTT, such as homeostasis model assessment-insulin resistance and quantitative insulin sensitivity check index. Among them, model 5 had the highest r2 (0.505 in NGT, 0.556 in AGT, respectively). Conclusions: Our modified BIGTT models proved to be accurate and easy methods for estimating IR, and can be used in clinical practice and research.

Original languageEnglish
Pages (from-to)290-296
Number of pages7
JournalJournal of Diabetes Investigation
Volume5
Issue number3
DOIs
Publication statusPublished - May 2014

Keywords

  • Insulin resistance
  • Oral glucose tolerance test
  • Steady-state plasma glucose

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Fingerprint

Dive into the research topics of 'Accurate method to estimate insulin resistance from multiple regression models using data of metabolic syndrome and oral glucose tolerance test'. Together they form a unique fingerprint.

Cite this