A Unique Carboxylic-Acid Hydrogen-Bond Network (CAHBN) Confers Glutaminyl Cyclase Activity on M28 Family Enzymes

Kai Fa Huang, Jing Siou Huang, Mao Lun Wu, Wan Ling Hsieh, Kai Cheng Hsu, Hui Ling Hsu, Tzu Ping Ko, Andrew H.J. Wang

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Proteins with sequence or structure similar to those of di-Zn exopeptidases are usually classified as the M28-family enzymes, including the mammalian-type glutaminyl cyclases (QCs). QC catalyzes protein N-terminal pyroglutamate formation, a posttranslational modification important under many physiological and pathological conditions, and is a drug target for treating neurodegenerative diseases, cancers and inflammatory disorders. Without functional characterization, mammalian QCs and their orthologs remain indistinguishable at the sequence and structure levels from other M28-family proteins, leading to few reported QCs. Here, we show that a low-barrier carboxylic-acid hydrogen-bond network (CAHBN) is required for QC activity and discriminates QCs from M28-family peptidases. We demonstrate that the CAHBN-containing M28 peptidases deposited in the PDB are indeed QCs. Our analyses identify several thousands of QCs from the three domains of life, and we enzymatically and structurally characterize several. For the first time, the interplay between a CAHBN and the binuclear metal-binding center of mammalian QCs is made clear. We found that the presence or absence of CAHBN is a key discriminator for the formation of either the mono-Zn QCs or the di-Zn exopeptidases. Our study helps explain the possible roles of QCs in life.

Original languageEnglish
Article number166960
JournalJournal of Molecular Biology
Volume433
Issue number13
DOIs
Publication statusPublished - Jun 25 2021

Keywords

  • glutaminyl-peptide cyclotransferase
  • low-barrier hydrogen bond
  • M28 family exopeptidase
  • posttranslational modification
  • pyroglutamate

ASJC Scopus subject areas

  • Biophysics
  • Structural Biology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'A Unique Carboxylic-Acid Hydrogen-Bond Network (CAHBN) Confers Glutaminyl Cyclase Activity on M28 Family Enzymes'. Together they form a unique fingerprint.

Cite this