A Novel Two-Stage Induced Deep Learning System for Classifying Similar Drugs with Diverse Packaging

Yu Sin You, Yu Shiang Lin

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Dispensing errors play a crucial role in various medical errors, unfortunately emerging as the third leading cause of death in the United States. This alarming statistic has spurred the World Health Organization (WHO) into action, leading to the initiation of the Medication Without Harm Campaign. The primary objective of this campaign is to prevent dispensing errors from occurring and ensure patient safety. Due to the rapid development of deep learning technology, there has been a significant increase in the development of automatic dispensing systems based on deep learning classification to avoid dispensing errors. However, most previous studies have focused on developing deep learning classification systems for unpackaged pills or drugs with the same type of packaging. However, in the actual dispensing process, thousands of similar drugs with diverse packaging within a healthcare facility greatly increase the risk of dispensing errors. In this study, we proposed a novel two-stage induced deep learning (TSIDL)-based system to classify similar drugs with diverse packaging efficiently. The results demonstrate that the proposed TSIDL method outperforms state-of-the-art CNN models in all classification metrics. It achieved a state-of-the-art classification accuracy of 99.39%. Moreover, this study also demonstrated that the TSIDL method achieved an inference time of only 3.12 ms per image. These results highlight the potential of real-time classification for similar drugs with diverse packaging and their applications in future dispensing systems, which can prevent dispensing errors from occurring and ensure patient safety efficiently.

Original languageEnglish
Article number7275
JournalSensors
Volume23
Issue number16
DOIs
Publication statusPublished - Aug 2023

Keywords

  • convolutional neural network
  • deep learning
  • drug-image classification
  • induced deep learning
  • two-stage induced deep learning

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A Novel Two-Stage Induced Deep Learning System for Classifying Similar Drugs with Diverse Packaging'. Together they form a unique fingerprint.

Cite this