A new triterpenoid glucoside from a novel acidic glycosylation of ganoderic acid a via recombinant glycosyltransferase of bacillus subtilis

Te Sheng Chang, Chien Min Chiang, Yu Han Kao, Jiumn Yih Wu, Yu Wei Wu, Tzi Yuan Wang

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Ganoderic acid A (GAA) is a bioactive triterpenoid isolated from the medicinal fungus Ganoderma lucidum. Our previous study showed that the Bacillus subtilis ATCC (American type culture collection) 6633 strain could biotransform GAA into compound (1), GAA-15-O-β-glucoside, and compound (2). Even though we identified two glycosyltransferases (GT) to catalyze the synthesis of GAA-15-O-β-glucoside, the chemical structure of compound (2) and its corresponding enzyme remain elusive. In the present study, we identified BsGT110, a GT from the same B. subtilis strain, for the biotransformation of GAA into compound (2) through acidic glycosylation. BsGT110 showed an optimal glycosylation activity toward GAA at pH 6 but lost most of its activity at pH 8. Through a scaled-up production, compound (2) was successfully isolated using preparative high-performance liquid chromatography and identified to be a new triterpenoid glucoside (GAA-26-O-β-glucoside) by mass and nuclear magnetic resonance spectroscopy. The results of kinetic experiments showed that the turnover number (kcat) of BsGT110 toward GAA at pH 6 (kcat = 11.2 min−1) was 3-fold higher than that at pH 7 (kcat = 3.8 min−1), indicating that the glycosylation activity of BsGT110 toward GAA was more active at acidic pH 6. In short, we determined that BsGT110 is a unique GT that plays a role in the glycosylation of triterpenoid at the C-26 position under acidic conditions, but loses most of this activity under alkaline ones, suggesting that acidic solutions may enhance the catalytic activity of this and similar types of GTs toward triterpenoids.

Original languageEnglish
Article number3457
JournalMolecules
Volume24
Issue number19
DOIs
Publication statusPublished - Sept 24 2019

Keywords

  • Acidic
  • Bacillus subtilis
  • Ganoderic acid A
  • Glucosyltransferase
  • Triterpenoid

ASJC Scopus subject areas

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'A new triterpenoid glucoside from a novel acidic glycosylation of ganoderic acid a via recombinant glycosyltransferase of bacillus subtilis'. Together they form a unique fingerprint.

Cite this