Abstract
There is paucity of the statistical model that is specified for data on imported COVID-19 cases with the unique global information on infectious properties of SARS-CoV-2 variant different from local outbreak data used for estimating transmission and infectiousness parameters via the established epidemic models. To this end, a new approach with a four-state stochastic model was proposed to formulate these well-established infectious parameters with three new parameters, including the pre-symptomatic incidence rate, the median of pre-symptomatic transmission time (MPTT) to symptomatic state, and the incidence (proportion) of asymptomatic cases using imported COVID-19 data. We fitted the proposed stochastic model to empirical data on imported COVID-19 cases from D614G to Omicron with the corresponding calendar periods according to the classification GISAID information on the evolution of SARS-CoV-2 variant between March 2020 and Jan 2022 in Taiwan. The pre-symptomatic incidence rate was the highest for Omicron followed by Alpha, Delta, and D614G. The MPTT (in days) increased from 3.45 (first period) ~ 4.02 (second period) of D614G until 3.94–4.65 of VOC Alpha but dropped to 3.93–3.49 of Delta and 2 days (only first period) of Omicron. The proportion of asymptomatic cases increased from 29% of D-614G period to 59.2% of Omicron. Modeling data on imported cases across strains of SARS-CoV-2 not only bridges the link between the underlying natural infectious properties elucidated in the previous epidemic models and different disease phenotypes of COVID-19 but also provides precision quarantine and isolation policy for border control in the face of various emerging SRAS-CoV-2 variants globally.
Original language | English |
---|---|
Pages (from-to) | 441-452 |
Number of pages | 12 |
Journal | Stochastic Environmental Research and Risk Assessment |
Volume | 37 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2023 |
Keywords
- COVID-19
- Pre-symptomatic
- Stochastic process
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- Water Science and Technology
- Safety, Risk, Reliability and Quality
- General Environmental Science