TY - GEN
T1 - A modified surface on titanium alloy by micro-blasting process
AU - Lin, Yi
AU - Huang, Chiung Fang
AU - Cheng, Hsin Chung
AU - Shen, Yung Kang
PY - 2013
Y1 - 2013
N2 - Hydroxyapatite (HA) coating of hard tissue implants is widely employed for its biocompatible and osteoconductive properties as well as its improved mechanical properties. In this study, a novel micro-blasting process has been used to successfully modify a titanium alloy substrate with a HA treatment using a dopant/abrasive regime. The impact of a series of apatite abrasives, was investigated to determine the effect of abrasive particle size on the surface properties of both micro-blasting (abrasive only) and continuous (HA/abrasive) treatments. The resultant HA treated substrates were compared to substrates treated with abrasive only (micro-blasted) and an untreated Ti. The HA powder, apatite abrasives and the treated substrates were characterized for chemical composition, coating coverage, crystalline and topography. The results show that the surface roughness of the HA blasted modification was affected by the particle size of the apatite abrasives used. This study demonstrates the ability of the continuous process to deposit HA coatings with a range of surface properties onto Ti alloy substrates. The ability of the continuous technology to offer diversity in modifying surface topography offers exciting new prospects in tailoring the properties of medical devices for applications ranging from dental to orthopedic settings.
AB - Hydroxyapatite (HA) coating of hard tissue implants is widely employed for its biocompatible and osteoconductive properties as well as its improved mechanical properties. In this study, a novel micro-blasting process has been used to successfully modify a titanium alloy substrate with a HA treatment using a dopant/abrasive regime. The impact of a series of apatite abrasives, was investigated to determine the effect of abrasive particle size on the surface properties of both micro-blasting (abrasive only) and continuous (HA/abrasive) treatments. The resultant HA treated substrates were compared to substrates treated with abrasive only (micro-blasted) and an untreated Ti. The HA powder, apatite abrasives and the treated substrates were characterized for chemical composition, coating coverage, crystalline and topography. The results show that the surface roughness of the HA blasted modification was affected by the particle size of the apatite abrasives used. This study demonstrates the ability of the continuous process to deposit HA coatings with a range of surface properties onto Ti alloy substrates. The ability of the continuous technology to offer diversity in modifying surface topography offers exciting new prospects in tailoring the properties of medical devices for applications ranging from dental to orthopedic settings.
KW - AlO&HA
KW - Micro-blasting
KW - Surface characterization
UR - http://www.scopus.com/inward/record.url?scp=84886871142&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886871142&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/AMR.797.696
DO - 10.4028/www.scientific.net/AMR.797.696
M3 - Conference contribution
AN - SCOPUS:84886871142
SN - 9783037858257
T3 - Advanced Materials Research
SP - 696
EP - 699
BT - Advances in Abrasive Technology XVI
T2 - 16th International Symposium on Advances in Abrasive Technology, ISAAT 2013 and 17th Chinese Conference of Abrasive Technology, CCAT 2013
Y2 - 23 September 2013 through 26 September 2013
ER -