BACKGROUND: Excessive mucus secretion is a serious issue for patients with chronic obstructive airway disease (COAD), which can be effectively managed through postural drainage and percussion (PD + P) during pulmonary rehabilitation (PR). Home-based (H)-PR can be as effective as center-based PR but lacks professional supervision and timely feedback, leading to low motivation and adherence. Telehealth home-based pulmonary (TH-PR) has emerged to assist H-PR, but video conferencing and telephone calls remain the main approaches for COAD patients. Therefore, research on effectively assisting patients in performing PD + P during TH-PR is limited.

OBJECTIVE: This study developed a mobile-based airway clearance care for chronic obstructive airway disease (COAD-MoAcCare) system to support personalized TH-PR for COAD patients and evaluated its usability through expert validation.

METHODS: The COAD-MoAcCare system uses a mobile device through deep learning-based vision technology to monitor, guide, and evaluate COAD patients' PD + P operations in real time during TH-PR programs. Medical personnel can manage and monitor their personalized PD + P and operational statuses through the system to improve TH-PR performance. Respiratory therapists from different hospitals evaluated the system usability using system questionnaires based on the technology acceptance model, system usability scale (SUS), and task load index (NASA-TLX).

RESULTS: Eleven participant therapists were highly satisfied with the COAD-MoAcCare system, rating it between 4.1 and 4.6 out of 5.0 on all scales. The system demonstrated good usability (SUS score of 74.1 out of 100) and a lower task load (NASA-TLX score of 30.0 out of 100). The overall accuracy of PD + P operations reached a high level of 97.5% by comparing evaluation results of the system by experts.

CONCLUSIONS: The COAD-MoAcCare system is the first mobile-based method to assist COAD patients in conducting PD + P in TH-PR. It was proven to be usable by respiratory therapists, so it is expected to benefit medical personnel and COAD patients. It will be further evaluated through clinical trials.

Original languageEnglish
Pages (from-to)20552076231207206
JournalDigital Health
Publication statusPublished - Oct 12 2023


Dive into the research topics of 'A mobile-based airway clearance care system using deep learning-based vision technology to support personalized home-based pulmonary rehabilitation for COAD patients: Development and usability testing'. Together they form a unique fingerprint.

Cite this