TY - JOUR
T1 - 4-Acetylantrocamol LT3 Inhibits Glioblastoma Cell Growth and Downregulates DNA Repair Enzyme O6-Methylguanine-DNA Methyltransferase
AU - Lee, Shih Yu
AU - Yen, I. Chuan
AU - Lin, Jang Chun
AU - Chung, Min Chieh
AU - Liu, Wei Hsiu
N1 - Publisher Copyright:
© 2021 World Scientific Publishing Company.
PY - 2021
Y1 - 2021
N2 - Glioblastoma multiforme (GBM) is a deadly malignant brain tumor that is resistant to most clinical treatments. Novel therapeutic agents that are effective against GBM are required. Antrodia cinnamomea has shown antiproliferative effects in GBM cells. However, the exact mechanisms and bioactive components remain unclear. Thus, the present study aimed to investigate the effect and mechanism of 4-acetylantrocamol LT3 (4AALT3), a new ubiquinone from Antrodia cinnamomeamycelium, in vitro. U87 and U251 cell lines were treated with the indicated concentration of 4AALT3. Cell viability, cell colony-forming ability, migration, and the expression of proteins in well-known signaling pathways involved in the malignant properties of glioblastoma were then analyzed by CCK-8, colony formation, wound healing, and western blotting assays, respectively. We found that 4AALT3 significantly decreased cell viability, colony formation, and cell migration in both in vitro models. The epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Hippo/yes-associated protein (YAP), and cAMP-response element binding protein (CREB) pathways were suppressed by 4AALT3. Moreover, 4AALT3 decreased the level of DNA repair enzyme O6-methylguanine-DNA methyltransferase and showed a synergistic effect with temozolomide. Our findings provide the basis for exploring the beneficial effect of 4AALT3 on GBM in vivo.
AB - Glioblastoma multiforme (GBM) is a deadly malignant brain tumor that is resistant to most clinical treatments. Novel therapeutic agents that are effective against GBM are required. Antrodia cinnamomea has shown antiproliferative effects in GBM cells. However, the exact mechanisms and bioactive components remain unclear. Thus, the present study aimed to investigate the effect and mechanism of 4-acetylantrocamol LT3 (4AALT3), a new ubiquinone from Antrodia cinnamomeamycelium, in vitro. U87 and U251 cell lines were treated with the indicated concentration of 4AALT3. Cell viability, cell colony-forming ability, migration, and the expression of proteins in well-known signaling pathways involved in the malignant properties of glioblastoma were then analyzed by CCK-8, colony formation, wound healing, and western blotting assays, respectively. We found that 4AALT3 significantly decreased cell viability, colony formation, and cell migration in both in vitro models. The epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Hippo/yes-associated protein (YAP), and cAMP-response element binding protein (CREB) pathways were suppressed by 4AALT3. Moreover, 4AALT3 decreased the level of DNA repair enzyme O6-methylguanine-DNA methyltransferase and showed a synergistic effect with temozolomide. Our findings provide the basis for exploring the beneficial effect of 4AALT3 on GBM in vivo.
KW - 4-Acetylantrocamol LT3
KW - CREB
KW - Glioblastoma Multiforme
KW - MGMT
KW - mTOR
KW - YAP
UR - http://www.scopus.com/inward/record.url?scp=85103954411&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103954411&partnerID=8YFLogxK
U2 - 10.1142/S0192415X21500476
DO - 10.1142/S0192415X21500476
M3 - Article
C2 - 33827387
AN - SCOPUS:85103954411
SN - 0192-415X
VL - 49
SP - 983
EP - 999
JO - American Journal of Chinese Medicine
JF - American Journal of Chinese Medicine
IS - 4
ER -