Endothelial nitric oxide synthase (eNOS) modulates vascular blood pressure and is predominantly expressed in endothelial cells and activated through the protein kinase B (Akt/PKB)-dependent pathway. We previously reported that 3-methylcholanthrene (3MC) activates the aryl hydrocarbon receptor (AhR) and reduces PI3K/Akt phosphorylation. This study investigated the mechanism underlying the downregulatory effects of 3-MC on nitric oxide (NO) production occurring through the AhR/RhoA/Akt-mediated mechanism. The mechanism underlying the effects of 3-MC on eNOS activity and blood pressure was examined in vitro and in vivo through genetic and pharmacological approaches. Results indicated that 3-MC modified heat shock protein 90 (HSP90), caveolin-1, dynein, and eNOS mRNA and protein expression through the AhR/RhoA-dependent mechanism in mouse cerebral vascular endothelial cells (MCVECs) and that 3-MC reduced eNOS phosphorylation through the AhR/RhoA-mediated inactivation of Akt1. The upregulation of dynein expression was associated with decreased eNOS dimer formation (eNOS dimer; an activated form of the enzyme). Coimmunoprecipitation assay results indicated that 3-MC significantly reduced the interaction between eNOS and its regulatory proteins, including Akt1 and HSP90, but increased the interaction between eNOS and caveolin-1. Immunofluorescence and Western blot analysis revealed that 3-MC reduced the amount of membrane-bound activated eNOS, and a modified Griess assay revealed that 3-MC concomitantly reduced NO production. However, simvastatin reduced 3-MC-mediated murine hypertension. Our study results indicate that AhR, RhoA, and eNOS have major roles in blood pressure regulation. Statin intervention might provide a potential therapeutic approach for reducing hypertension caused by 3-MC.

Original languageEnglish
Pages (from-to)1020-1029
Number of pages10
JournalJournal of Cellular Physiology
Issue number5
Publication statusPublished - May 1 2017

ASJC Scopus subject areas

  • Medicine(all)
  • Physiology
  • Clinical Biochemistry
  • Cell Biology


Dive into the research topics of '3-Methylcholanthrene/Aryl-Hydrocarbon Receptor-Mediated Hypertension Through eNOS Inactivation'. Together they form a unique fingerprint.

Cite this