TY - JOUR
T1 - σP-NagA-L1/L2 Regulatory Circuit Involved in ΔompA299-356Mediated Increase in β-Lactam Susceptibility in Stenotrophomonas maltophilia
AU - Li, Li Hua
AU - Wu, Cheng Mu
AU - Chang, Chia Lun
AU - Huang, Hsin Hui
AU - Wu, Chao Jung
AU - Yang, Tsuey Ching
N1 - Publisher Copyright:
© 2022 Li et al.
PY - 2022/11
Y1 - 2022/11
N2 - OmpA, the most abundant porin in Stenotrophomonas maltophilia KJ, exists as a two-domain structure with an N-terminal domain of β-barrel structure embedded in the outer membrane and a C-terminal domain collocated in the periplasm. KJΔOmpA299-356, an ompA mutant of S. maltophilia KJ with a truncated OmpA devoid of 299 to 356 amino acids (aa), was able to stably embed in the outer membrane. KJΔOmpA299-356 was more susceptible to β-lactams than wild-type KJ. We aimed to elucidate the mechanism underlying the ΔompA299-356-mediated increase in β-lactam susceptibility (abbreviated as “ΔOmpA299-356 phenotype”). KJΔOmpA299-356 displayed a lower ceftazidime (CAZ)-induced β-lactamase activity than KJ. Furthermore, KJ2, a L1/ L2 β-lactamases-null mutant, and KJ2ΔOmpA299-356, a KJ2 mutant with truncated OmpA devoid of299 to 356 aa, had comparable β-lactam susceptibility. Both lines of evidence indicate that decreased β-lactamase activity contributes to the ΔOmpA299-356 phenotype. We analyzed the transcriptome results of KJ and KJΔOmpA299-356, focusing on PG homeostasis-associated genes. Among the 36 genes analyzed, the nagA gene was upregulated 4.65-fold in KJΔOmpA299-356. Deletion of the nagA gene from the chromosome of KJΔOmpA299-356 restored β-lactam susceptibility and CAZ-induced β-lactamase activity to wild-type levels, verifying that nagA-upregulation in KJΔOmpA299-356 contributes to the ΔOmpA299-356 phenotype. Furthermore, transcriptome analysis revealed that rpoE (Smlt3555) and rpoP (Smlt3514) were significantly upregulated in KJΔOmpA299-356. The deletion mutant construction, β-lactam susceptibility, and β-lactamase activity analysis demonstrated that σP, but not σE, was involved in the ΔOmpA299-356 phenotype. A real-time quantitative (qRT-PCR) assay confirmed that nagA is a member of the σP regulon. The involvement of the σP-NagA-L1/L2 regulatory circuit in the ΔOmpA299-356 phenotype was manifested.
AB - OmpA, the most abundant porin in Stenotrophomonas maltophilia KJ, exists as a two-domain structure with an N-terminal domain of β-barrel structure embedded in the outer membrane and a C-terminal domain collocated in the periplasm. KJΔOmpA299-356, an ompA mutant of S. maltophilia KJ with a truncated OmpA devoid of 299 to 356 amino acids (aa), was able to stably embed in the outer membrane. KJΔOmpA299-356 was more susceptible to β-lactams than wild-type KJ. We aimed to elucidate the mechanism underlying the ΔompA299-356-mediated increase in β-lactam susceptibility (abbreviated as “ΔOmpA299-356 phenotype”). KJΔOmpA299-356 displayed a lower ceftazidime (CAZ)-induced β-lactamase activity than KJ. Furthermore, KJ2, a L1/ L2 β-lactamases-null mutant, and KJ2ΔOmpA299-356, a KJ2 mutant with truncated OmpA devoid of299 to 356 aa, had comparable β-lactam susceptibility. Both lines of evidence indicate that decreased β-lactamase activity contributes to the ΔOmpA299-356 phenotype. We analyzed the transcriptome results of KJ and KJΔOmpA299-356, focusing on PG homeostasis-associated genes. Among the 36 genes analyzed, the nagA gene was upregulated 4.65-fold in KJΔOmpA299-356. Deletion of the nagA gene from the chromosome of KJΔOmpA299-356 restored β-lactam susceptibility and CAZ-induced β-lactamase activity to wild-type levels, verifying that nagA-upregulation in KJΔOmpA299-356 contributes to the ΔOmpA299-356 phenotype. Furthermore, transcriptome analysis revealed that rpoE (Smlt3555) and rpoP (Smlt3514) were significantly upregulated in KJΔOmpA299-356. The deletion mutant construction, β-lactam susceptibility, and β-lactamase activity analysis demonstrated that σP, but not σE, was involved in the ΔOmpA299-356 phenotype. A real-time quantitative (qRT-PCR) assay confirmed that nagA is a member of the σP regulon. The involvement of the σP-NagA-L1/L2 regulatory circuit in the ΔOmpA299-356 phenotype was manifested.
KW - beta-lactam resistance
KW - OmpA
KW - peptiodglycan stress
KW - sigma factor
UR - http://www.scopus.com/inward/record.url?scp=85144637217&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144637217&partnerID=8YFLogxK
U2 - 10.1128/spectrum.02797-22
DO - 10.1128/spectrum.02797-22
M3 - Article
C2 - 36350132
AN - SCOPUS:85144637217
SN - 2165-0497
VL - 10
JO - Microbiology spectrum
JF - Microbiology spectrum
IS - 6
ER -