β2-Integrin and Notch-1 differentially regulate CD34 +CD31+ cell plasticity in vascular niches

Yu Tsung Shih, Mei Cun Wang, Tung Lin Yang, Jing Zhou, Ding Yu Lee, Pei Ling Lee, Shaw Fang Yet, Jeng Jiann Chiu

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Aims The implication of circulating haematopoietic CD34+ progenitors in the vasculature is unclear due to the lack of understanding of their characteristics and plasticity mediated by their cellular microenvironment. We investigated how vascular smooth muscle cells (SMCs) and their interactions with endothelial cells (ECs) affect the behaviour and plasticity of CD34+CD31+ progenitors and the underlying mechanisms.Methods and resultsHuman peripheral blood-derived CD34 +CD31+ cells were directly transplanted into injured arteries in vivo and co-cultured with ECs and SMCs in vitro. CD34 +CD31+ progenitors injected into wire-injured mouse arteries differentiate into ECs and macrophages in the neoendothelial layer and neointima, respectively. SMC-co-culture increases CD34+CD31 + cell mobility and adhesion to and transmigration across ECs. Sorted CD34+CD31+ progenitors that adhered to ECs co-cultured with SMCs have the capacity to form capillary-like structures in Matrigel and chimeric blood vessels in vivo. Sorted transmigrated progenitors give rise to macrophages with increased pro-angiogenic activity. These differentiations of CD34+CD31+ progenitors into ECs and macrophages are mediated by β2-integrin and Notch-1, respectively. β2-Integrin and Notch-1 are activated by their counterligands, intercellular adhesion molecule-1 (ICAM-1) and jagged-1, which are highly expressed in the neoendothelium and neointima in injured arteries. Intra-arterial injection of β2-integrin-activated CD34 +CD31+ progenitors into wire-injured mouse arteries inhibits neointima formation.ConclusionOur findings indicate that the peripheral vascular niches composed of ECs and SMCs may predispose haematopoietic CD34+CD31+ progenitors to differentiate into ECs and macrophages through the activations of the ICAM-1/β2-integrin and jagged-1/Notch-1 cascades, respectively.

Original languageEnglish
Pages (from-to)296-307
Number of pages12
JournalCardiovascular Research
Volume96
Issue number2
DOIs
Publication statusPublished - Nov 1 2012
Externally publishedYes

Keywords

  • β-integrin
  • Endothelial cell
  • Haematopoietic progenitor
  • Notch
  • Smooth muscle cell

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'β2-Integrin and Notch-1 differentially regulate CD34 +CD31+ cell plasticity in vascular niches'. Together they form a unique fingerprint.

Cite this