Establishing a Multimodal Personalized Fracture Risk Prediction Model for Dialysis Patients Using Clinical Phenotype and Wearable Data

Project: A - Government Institutionb - National Science and Technology Council

Project Details

Description

透析病人的骨鬆骨折風險預測與評估需要全方位的考量以適應個體化的不同,故本計畫採用單一模態及多模態的機器學習,分別建立臨床表型、穿戴式裝置連續性生理量測之預測模型,與利用Fusion AI技術融合兩者模態資料組合建立深度預測模型,並找出最佳模型。最後,透過前瞻式觀察性臨床試驗導入最佳模型於臨床場域進行模型確校,以利未來模型的泛化及商品化規劃。
StatusFinished
Effective start/end date8/1/237/31/24

Keywords

  • Dialysis
  • osteoporosis
  • fracture
  • bone marrow density
  • physical activity
  • machine learning
  • clinical phenotype
  • clinical research database
  • electronic medical records
  • wearable devices
  • continuous physiological measurements
  • multimodal machine learning