Establishing a Model for Restoration Color Prediction and Ceramic-Based Block Selection Based on Regression-Based Deep Learning

Project: A - Government Institutionb - National Science and Technology Council

Project Details

Description

本計畫在臨床醫師常常使用數位相機拍攝照片的前提下,進行端對端(end-to-end) CNN-DNN-R模型,開發修復物色彩空間預測系統,以供臨床端比色與牙技端瓷塊選擇。預期的貢獻包括: A. 提高數位影像比色的精準度,可成為輔助牙醫師比色方案的重要工具。 B. 牙技師在製作修復物時,可快速的預測修復物色彩空間,無障礙選擇合適的瓷塊。 C. CNN-DNN-R模型可為臨床端與牙技端客製化服務,邁向高附加價值科技比色。
StatusFinished
Effective start/end date8/1/227/31/23

Keywords

  • CAD/CAM-used ceramic block
  • color matching
  • Digital Single-lens Reflex Camera
  • Convolution Neural Network
  • Deeping Neural Network