Combining Physiological and Psychological Indicators with Remote Technology to Establish the Prediction Model for Major Depressive Disorder: a Study Using Ensemble Multi-Featured Machine Learning

Project: A - Government Institutionb - National Science and Technology Council

Project Details

Description

鬱症(MDD)是易反覆發作的精神疾病,存在就醫不足、診斷不足、治療不足與持續不足等臨床困境。實證資料顯示鬱症之腦部與心臟具密切關聯性,本研究以過去部分成果為基礎,經由雲端技術平台收集心率變異、單通道腦波(single-channel EEG)與情緒紀錄等生理與心理指標,運用集成多特徵機器學習(ensemble multi-featured machine learning)建立鬱症症狀嚴重度之預測模型,並透過追蹤復發個案優化此模型。此研究可於鬱症中驗證腦與心之連結,強化醫學與資訊工程之合作聯盟,預期可優化鬱症評估模式,克服目前鬱症診治之臨床困境,為減少個人身心失能與社會經濟衝擊提供可能方向。
StatusActive
Effective start/end date8/1/237/31/25

Keywords

  • major depressive disorder
  • prediction model
  • ensemble multi-featured machine learning
  • mood chart
  • HRV(heart rate variability)
  • EEG(electrocardiography)